Copied to
clipboard

G = C323Dic10order 360 = 23·32·5

2nd semidirect product of C32 and Dic10 acting via Dic10/C10=C22

metabelian, supersoluble, monomial

Aliases: C153Dic6, C30.21D6, C323Dic10, Dic15.2S3, (C3×C15)⋊6Q8, C10.12S32, C33(C15⋊Q8), C6.27(S3×D5), (C3×C6).12D10, C52(C322Q8), C3⋊Dic3.3D5, C2.5(D15⋊S3), (C3×C30).26C22, (C3×Dic15).4C2, (C5×C3⋊Dic3).2C2, SmallGroup(360,88)

Series: Derived Chief Lower central Upper central

C1C3×C30 — C323Dic10
C1C5C15C3×C15C3×C30C3×Dic15 — C323Dic10
C3×C15C3×C30 — C323Dic10
C1C2

Generators and relations for C323Dic10
 G = < a,b,c,d | a3=b3=c20=1, d2=c10, ab=ba, cac-1=dad-1=a-1, cbc-1=b-1, bd=db, dcd-1=c-1 >

Subgroups: 260 in 54 conjugacy classes, 23 normal (11 characteristic)
C1, C2, C3, C3, C4, C5, C6, C6, Q8, C32, C10, Dic3, C12, C15, C15, C3×C6, Dic5, C20, Dic6, C30, C30, C3×Dic3, C3⋊Dic3, Dic10, C3×C15, C5×Dic3, C3×Dic5, Dic15, C322Q8, C3×C30, C15⋊Q8, C3×Dic15, C5×C3⋊Dic3, C323Dic10
Quotients: C1, C2, C22, S3, Q8, D5, D6, D10, Dic6, S32, Dic10, S3×D5, C322Q8, C15⋊Q8, D15⋊S3, C323Dic10

Smallest permutation representation of C323Dic10
On 120 points
Generators in S120
(1 21 50)(2 51 22)(3 23 52)(4 53 24)(5 25 54)(6 55 26)(7 27 56)(8 57 28)(9 29 58)(10 59 30)(11 31 60)(12 41 32)(13 33 42)(14 43 34)(15 35 44)(16 45 36)(17 37 46)(18 47 38)(19 39 48)(20 49 40)(61 92 106)(62 107 93)(63 94 108)(64 109 95)(65 96 110)(66 111 97)(67 98 112)(68 113 99)(69 100 114)(70 115 81)(71 82 116)(72 117 83)(73 84 118)(74 119 85)(75 86 120)(76 101 87)(77 88 102)(78 103 89)(79 90 104)(80 105 91)
(1 50 21)(2 22 51)(3 52 23)(4 24 53)(5 54 25)(6 26 55)(7 56 27)(8 28 57)(9 58 29)(10 30 59)(11 60 31)(12 32 41)(13 42 33)(14 34 43)(15 44 35)(16 36 45)(17 46 37)(18 38 47)(19 48 39)(20 40 49)(61 92 106)(62 107 93)(63 94 108)(64 109 95)(65 96 110)(66 111 97)(67 98 112)(68 113 99)(69 100 114)(70 115 81)(71 82 116)(72 117 83)(73 84 118)(74 119 85)(75 86 120)(76 101 87)(77 88 102)(78 103 89)(79 90 104)(80 105 91)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 80 11 70)(2 79 12 69)(3 78 13 68)(4 77 14 67)(5 76 15 66)(6 75 16 65)(7 74 17 64)(8 73 18 63)(9 72 19 62)(10 71 20 61)(21 91 31 81)(22 90 32 100)(23 89 33 99)(24 88 34 98)(25 87 35 97)(26 86 36 96)(27 85 37 95)(28 84 38 94)(29 83 39 93)(30 82 40 92)(41 114 51 104)(42 113 52 103)(43 112 53 102)(44 111 54 101)(45 110 55 120)(46 109 56 119)(47 108 57 118)(48 107 58 117)(49 106 59 116)(50 105 60 115)

G:=sub<Sym(120)| (1,21,50)(2,51,22)(3,23,52)(4,53,24)(5,25,54)(6,55,26)(7,27,56)(8,57,28)(9,29,58)(10,59,30)(11,31,60)(12,41,32)(13,33,42)(14,43,34)(15,35,44)(16,45,36)(17,37,46)(18,47,38)(19,39,48)(20,49,40)(61,92,106)(62,107,93)(63,94,108)(64,109,95)(65,96,110)(66,111,97)(67,98,112)(68,113,99)(69,100,114)(70,115,81)(71,82,116)(72,117,83)(73,84,118)(74,119,85)(75,86,120)(76,101,87)(77,88,102)(78,103,89)(79,90,104)(80,105,91), (1,50,21)(2,22,51)(3,52,23)(4,24,53)(5,54,25)(6,26,55)(7,56,27)(8,28,57)(9,58,29)(10,30,59)(11,60,31)(12,32,41)(13,42,33)(14,34,43)(15,44,35)(16,36,45)(17,46,37)(18,38,47)(19,48,39)(20,40,49)(61,92,106)(62,107,93)(63,94,108)(64,109,95)(65,96,110)(66,111,97)(67,98,112)(68,113,99)(69,100,114)(70,115,81)(71,82,116)(72,117,83)(73,84,118)(74,119,85)(75,86,120)(76,101,87)(77,88,102)(78,103,89)(79,90,104)(80,105,91), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,80,11,70)(2,79,12,69)(3,78,13,68)(4,77,14,67)(5,76,15,66)(6,75,16,65)(7,74,17,64)(8,73,18,63)(9,72,19,62)(10,71,20,61)(21,91,31,81)(22,90,32,100)(23,89,33,99)(24,88,34,98)(25,87,35,97)(26,86,36,96)(27,85,37,95)(28,84,38,94)(29,83,39,93)(30,82,40,92)(41,114,51,104)(42,113,52,103)(43,112,53,102)(44,111,54,101)(45,110,55,120)(46,109,56,119)(47,108,57,118)(48,107,58,117)(49,106,59,116)(50,105,60,115)>;

G:=Group( (1,21,50)(2,51,22)(3,23,52)(4,53,24)(5,25,54)(6,55,26)(7,27,56)(8,57,28)(9,29,58)(10,59,30)(11,31,60)(12,41,32)(13,33,42)(14,43,34)(15,35,44)(16,45,36)(17,37,46)(18,47,38)(19,39,48)(20,49,40)(61,92,106)(62,107,93)(63,94,108)(64,109,95)(65,96,110)(66,111,97)(67,98,112)(68,113,99)(69,100,114)(70,115,81)(71,82,116)(72,117,83)(73,84,118)(74,119,85)(75,86,120)(76,101,87)(77,88,102)(78,103,89)(79,90,104)(80,105,91), (1,50,21)(2,22,51)(3,52,23)(4,24,53)(5,54,25)(6,26,55)(7,56,27)(8,28,57)(9,58,29)(10,30,59)(11,60,31)(12,32,41)(13,42,33)(14,34,43)(15,44,35)(16,36,45)(17,46,37)(18,38,47)(19,48,39)(20,40,49)(61,92,106)(62,107,93)(63,94,108)(64,109,95)(65,96,110)(66,111,97)(67,98,112)(68,113,99)(69,100,114)(70,115,81)(71,82,116)(72,117,83)(73,84,118)(74,119,85)(75,86,120)(76,101,87)(77,88,102)(78,103,89)(79,90,104)(80,105,91), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,80,11,70)(2,79,12,69)(3,78,13,68)(4,77,14,67)(5,76,15,66)(6,75,16,65)(7,74,17,64)(8,73,18,63)(9,72,19,62)(10,71,20,61)(21,91,31,81)(22,90,32,100)(23,89,33,99)(24,88,34,98)(25,87,35,97)(26,86,36,96)(27,85,37,95)(28,84,38,94)(29,83,39,93)(30,82,40,92)(41,114,51,104)(42,113,52,103)(43,112,53,102)(44,111,54,101)(45,110,55,120)(46,109,56,119)(47,108,57,118)(48,107,58,117)(49,106,59,116)(50,105,60,115) );

G=PermutationGroup([[(1,21,50),(2,51,22),(3,23,52),(4,53,24),(5,25,54),(6,55,26),(7,27,56),(8,57,28),(9,29,58),(10,59,30),(11,31,60),(12,41,32),(13,33,42),(14,43,34),(15,35,44),(16,45,36),(17,37,46),(18,47,38),(19,39,48),(20,49,40),(61,92,106),(62,107,93),(63,94,108),(64,109,95),(65,96,110),(66,111,97),(67,98,112),(68,113,99),(69,100,114),(70,115,81),(71,82,116),(72,117,83),(73,84,118),(74,119,85),(75,86,120),(76,101,87),(77,88,102),(78,103,89),(79,90,104),(80,105,91)], [(1,50,21),(2,22,51),(3,52,23),(4,24,53),(5,54,25),(6,26,55),(7,56,27),(8,28,57),(9,58,29),(10,30,59),(11,60,31),(12,32,41),(13,42,33),(14,34,43),(15,44,35),(16,36,45),(17,46,37),(18,38,47),(19,48,39),(20,40,49),(61,92,106),(62,107,93),(63,94,108),(64,109,95),(65,96,110),(66,111,97),(67,98,112),(68,113,99),(69,100,114),(70,115,81),(71,82,116),(72,117,83),(73,84,118),(74,119,85),(75,86,120),(76,101,87),(77,88,102),(78,103,89),(79,90,104),(80,105,91)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,80,11,70),(2,79,12,69),(3,78,13,68),(4,77,14,67),(5,76,15,66),(6,75,16,65),(7,74,17,64),(8,73,18,63),(9,72,19,62),(10,71,20,61),(21,91,31,81),(22,90,32,100),(23,89,33,99),(24,88,34,98),(25,87,35,97),(26,86,36,96),(27,85,37,95),(28,84,38,94),(29,83,39,93),(30,82,40,92),(41,114,51,104),(42,113,52,103),(43,112,53,102),(44,111,54,101),(45,110,55,120),(46,109,56,119),(47,108,57,118),(48,107,58,117),(49,106,59,116),(50,105,60,115)]])

39 conjugacy classes

class 1  2 3A3B3C4A4B4C5A5B6A6B6C10A10B12A12B12C12D15A···15H20A20B20C20D30A···30H
order123334445566610101212121215···152020202030···30
size112241830302222422303030304···4181818184···4

39 irreducible representations

dim1112222222444444
type++++-+++--++--
imageC1C2C2S3Q8D5D6D10Dic6Dic10S32S3×D5C322Q8C15⋊Q8D15⋊S3C323Dic10
kernelC323Dic10C3×Dic15C5×C3⋊Dic3Dic15C3×C15C3⋊Dic3C30C3×C6C15C32C10C6C5C3C2C1
# reps1212122244141444

Matrix representation of C323Dic10 in GL8(𝔽61)

10000000
01000000
00100000
00010000
00001000
00000100
000000060
000000160
,
10000000
01000000
00100000
00010000
0000606000
00001000
00000010
00000001
,
060000000
118000000
0060590000
00110000
000060000
00001100
00000001
00000010
,
2725000000
2734000000
009600000
0021520000
000060000
000006000
00000001
00000010

G:=sub<GL(8,GF(61))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,60,60],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,1,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,60,18,0,0,0,0,0,0,0,0,60,1,0,0,0,0,0,0,59,1,0,0,0,0,0,0,0,0,60,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[27,27,0,0,0,0,0,0,25,34,0,0,0,0,0,0,0,0,9,21,0,0,0,0,0,0,60,52,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;

C323Dic10 in GAP, Magma, Sage, TeX

C_3^2\rtimes_3{\rm Dic}_{10}
% in TeX

G:=Group("C3^2:3Dic10");
// GroupNames label

G:=SmallGroup(360,88);
// by ID

G=gap.SmallGroup(360,88);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-5,24,73,31,387,201,730,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^20=1,d^2=c^10,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽